If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16d^2-7d=0
a = 16; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·16·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*16}=\frac{0}{32} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*16}=\frac{14}{32} =7/16 $
| -2a-7+5a=a-1 | | ∠A=7x+40∠B=3x+112 | | 6o=11-6 | | 472f-0.5=-61.6f-8.3f | | x^2-7/2x+49/16=2+49/16 | | 88=(8n+3) | | (0,4)m=4 | | 10/240=x/100 | | 2(-3a+5)+4a=-16 | | 5=0.1x-0.64 | | 3x-2=4+3 | | 7x-23=11x+11 | | 6r-4(7+4r)=-3r | | 45x+75=120 | | -27+2x=6(x-8)-7x | | 4r+1=25+2r | | 4/5(d)=-28 | | 16-6r=4(1-2r) | | 12+2x-x=9x-1 | | x/2+1=-2.5 | | 3p-6(1+6p)=-270 | | 5=0.1x-0.6-4 | | z/5=9.33333333333333333333333 | | 8(6+b)=6+b | | 52=2y+14 | | p/3.6=7.27 | | 4/104=x/100 | | z/5=91/3 | | x+12=x2+6 | | 6r+16=2r+28 | | {0.2(6x+1)}/3.6=0.5x/9 | | 9d-18-6d=14d=18d |